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ABSTRACT 

To exploit the modeling features and inference capabilities of 

dynamic Bayesian networks(DBN), in designing and 

implementing an innovative approach to fault detection, 

identification, and recovery (FDIR) for autonomous 

spacecrafts . In particular,issues like partial observability, 

uncertain system evolution and system environment 

interaction, as well as the prediction and mitigation of 

imminent failures can be naturally addressed by the proposed 

approach. The DBN framework can augment the modeling 

and analytical power of standard FDIR methodologies,while 

still being able to be integrated into the usual system modeling 

procedures (like, for instance, fault tree analysis). 

An FDIR cycle composed of the tasks of diagnosis ,prognosis 

,and  recovery is introduced and characterized through a DBN 

model. In particular, by considering the execution of recovery 

actions in response to either a current or a future abnormal 

situation, both reactive as well as preventive recovery can be 

addressed respectively. The proposed approach has been 

implemented in an on-board software architecture 

called Anomaly resolution and prognostic health management 

for autonomy (ARPHA).The FDIR analysis of the power 

supply system of the ExoMars rover, by considering different 

anomalous and failure simulated scenarios; we conclude that 

ARPHA is able to properly detect and deal with the simulated 

problems. 

 
 

Index Terms—Autonomous spacecraft, dynamic Bayesian 

networks, fault detection identification and recovery. 

 
I. INTRODUCTION 

 
 
AUTONOMOUS spacecraft operation relies on the 

adequate and timely reaction of the system to changes in its 
operational environment, as well as in the operational status of 
the system. Both the system environment and the system 
status can exhibit various degrees of uncertain behavior 
particular, the operational status of the system is dependent on 

the internal sub-system and component reliability factors, as 

well as on the external environment factors affecting the 

system reliability and safety (e.g., thermal, radiation, illu-

mination conditions) and on system-environment interactions 

(e.g., stress factors, resource utilization profiles, degradation 

profiles, etc.). To address possible system faults and failures, 

the system under examination must be provided with some m  

 

 

ASSISTANT PROFESSOR 

 

 

The goal is a timely detection of faults and the initiation of the 

corresponding recovery action, often using static precompiled 

look-up tables, and basically concerned with the execution of 

the actions to put the spacecraft into a known safe 

configuration, thus trans-ferring control to the ground 

operations for troubleshooting and planning actual recovery.  
Moreover, classical FDIR represents a reactive approach, 

that cannot provide and utilize prognosis for the imminent 

failures. Such approaches are capable of providing adequate 

results for the statically captured system configurations, but 

they can poorly deal with the dynamic aspects of the sys-tems, 

such as recovery actions and reconfiguration. They do not 

address evolution of the system characteristics and history of 

the system interaction with the environment. 

In summary, standard on-board FDIR procedures do not 

reflect probabilistic causal dependencies between the faults 

and general system capabilities on one hand, and between the 

system-environment interaction evolution and system depend-

ability characteristics on the other hand.To address the above 

issues, an approach to on-board (and autonomous) FDIR is 

needed which has the capability to reason about anomalous 

observations based on the global knowledge of the system and 

its capabilities, system envi-ronment, and system-environment 

interaction in the presence of uncertainty 
 

 II. PROBABILISTIC GRAPHICAL MODELS AND FDIR 
 

PGM [9] are a class of probabilistic models that have 

recently gained a lot of attention outside artificial intelligence; 

in particular, their suitability to model and analyze a wide 

range of problems and situations involving system failures 

and recovery has contributed to their spread inside the reliabil-

ity, availability, maintainability, and safety (RAMS) commu-

nity [10]–[14]. Modeling of probabilistic causal dependencies 

is one of the main capabilities of PGM like Bayesian networks 

(BN), decision networks (DN), and their dynamic counter-

parts as DBN and dynamic decision networks (DDN) [9]. This 

class of models naturally captures dependencies and evolu-

tions under partial observability. From an FDIR perspective, 

such dependencies can involve system components as well as 

system-environment interaction and evolution, and system  
dependability characteristics; moreover, in decision models 

the effect of external actions can be modeled as well, and 

utility functions can be exploited in order to select the most 

  SURYA GROUP OF INSTITUTIONS #1,*2. 
                                      VIKRAVANDI, VILLUPURAM 
 



 

 

                                                                      ISSN : 2454-9924                    
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.   VERIFIM block diagram. 
 
(summarizing the history of the system uncertain evolution) 

and the effects of the recovery actions on future system states, 

the task of preventive recovery can be addressed as well. 

 
III. VERIFIM FRAMEWORK 

  
The ARPHA process is the core of the on-board 

autonomous FDIR and is intended to interact with an 

autonomy building block (ABB), setting, and exe-cuting a 

given spacecraft mission plan. The system context represents 

the interface between the external and the con-figuration 

environments (it represents a memory area that contains data 

received from sensors and from configuration parameters of 

the system); finally, the event handler compo-nent is in charge 

of handling the system events triggered by ARPHA, including 

the recovery events determined during the FDIR inference. In 

particular, in the VERIFIM framework, the following 

assumptions hold.  
1) ARPHA inference takes place in a time interval called 

mission frame, which is a set of discrete time points 

separated by a constant temporal width _ called the 

discretization step.   
2) The ABB plan actions are predefined, a given plan is 

loaded at the start of the mission frame, and only a 

single action is executed in a given instant; the ABB 

knows the current executing plan action and shares it 

with ARPHA through the system context.   
3) In order to address recovery, ARPHA has a set of poten-

tial recovery policies composed of a set of temporally 

tagged atomic actions that the spacecraft can execute 

autonomously; this means that each policy consists of a 

sequence of autonomous actions with a temporal dura-

tion; the execution is triggered by the event handler and   
4) The target system (i.e., the spacecraft) has a set of (pos-

sibly noisy) sensors concerning both its internal status 

(e.g., the battery level) and the external environment 

(e.g., the external temperature); the values of such sen-

sors are made available to ARPHA (after a possible 

preprocessing phase like a discretization for continu-ous 

values) through the system context; ARPHA also has 

access to configuration parameters (possibly set by 

“ground”) and to global information at the current time. 

 
IV. DYNAMIC BAYESIAN NETWORKS FOR AUTONOMOUS  

SYSTEM HEALTH MANAGEMENT 
  

Concerning the identification of dependencies and the 

quan-tification of the DBN model, in the VERIFIM project we 

adopted a mixed strategy involving FTA and knowledge 

engineering from domain experts. In particular, system and 

reliability engineers are very familiar with component-based 

formalisms like fault trees or dynamic fault tree (DFT) [20]; 

starting from a DFT model of our case study, we have been 

able to automatically compile a skeleton DBN model through 

the “DFT to DBN compiler” developed inside the RADYBAN 

tool. This has allowed us to greatly simplify the construction 

of the DBN model needed to implement the autonomous 

FDIR strategy.  
Given the framework of Section III, we can characterize the 

DBN model used by ARPHA as follows.  
1) The time interval between consecutive time slices is 

equal to the discretization step _ of ARPHA’s mission 

frame.   
2) Variables are discrete and can be subdivided as follows. 

 

a) One or more variables representing the possi-ble 

actions influencing the system behavior, either the 

plan actions the ABB can execute or the 

autonomous recovery actions being part of recov-

ery policies.  
b) A set of variables representing the system com-

ponents; the values of such variables correspond to 
the behavioral mode of the component (usually 

one “ok” mode and one or more failure or 
degraded modes).   

 

3) Intraslice dependencies concern dependencies at the 

same time instant; they can be between internal system 

variables and system components, or between a system 

component and the sensor providing a measure of its 

status (the so called sensor or observation model).  

4) Interslice dependencies concern the degradation model 

of the components (quantified for example by param-

eters like the failure rate), as well as the influence of 

actions (both plan actions and recovery actions) on sys-

tem components or subsystems (the so called transition 

model); we assume that if a given (plan or recovery) 

action is executed at time t, the effect is measured at 

time t + _, where _ is the discretization step.  

Finally, since we want to adopt a decision theoretic 

approach to select the best recovery policy, we 

identified a subset of variables whose outcomes are 

relevant for the recovery goals; a utility table is then 

built as a function of such selected variables  
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V. FDIR INFERENCE APPROACH 

 
In ARPHA, we decided to implement the FDIR analysis by 

resorting to junction tree (JT) inference algorithms [23]. In 

this class of algorithms, once the JT structure is obtained, one 

can get rid of the original network, so the actual on-board 

system model on which ARPHA is working is in fact a JT 

derived from the DBN produced by the modeling phase.  

  
The decision of resorting to JT inference was made because 

approximate algorithms based on simulation, e.g., particle fil-

tering [24], usually require several simulation runs in order to 

get a reasonable approximation, making them potentially 

unsuitable for real-time inference. Boyen–Koller (BK) 

algorithm . The algorithm depends on some input param-eters 

(set of nodes) called “clusters;” according to the clusters 

provided, it can produce approximate inference results with 

different degrees of accuracy.  

A.  ARPHA Implementation 
 

From the implementation point of view, ARPHA is com-

posed of one periodic process running (on a LEON3 CPU 

under RTEMS) in parallel to the other processes of on-board 

software. This “main” process, representing the on-board 

FDIR cycle, is composed of three sub-processes implementing 

the diagnosis, prognosis, and recovery tasks as indicated by 

the state diagram of Fig. 2.  
These tasks are characterized as follows.  
1) Diagnosis at Time t: A belief state on a set D of selected 

variables at time t (diagnostic variables like variables 

representing system components); i.e., the pos-terior 

probability at time t of each d ∈ D given the evidence 

up to time t.   
2) Prognosis at Time t

_
 From Time t < t

_
: The belief state 

of set D at time t, given the evidence up to time t (and 

possibly evidence about plan information up to t
_
 if 

available).  
3) Recovery at Time t: Choice of the “best” available 

policy (i.e., the one with maximum EU), given the 

evidence up to time t.   
In DBN terminology, diagnosis and prognosis are 

implemented with a filtering algorithm and correspond to a 

monitoring and prediction task respectively [7]. Recovery is 

implemented through filtering as well; it consists in setting the 

values of the variables involved in each policy to evaluate, 

followed by the computation of the EU of the current policy, and 

by finally selecting the one with the largest value of EU 

(maximum EU policy). The computation of the EU of a single 

policy is performed by computing the posterior probability of the 

variables involved in the utility function and by multiplying such 

probability with the corresponding utility value, summing up for 

all the variables of interest, i.e., those for which the utility table is 

defined (see Section VI for some examples). 

 

 

 

(4)Recovery at Time t: Choice of the “best” available policy 

(i.e., the one with maximum EU), given the evidence up to 

time t.   
In DBN terminology, diagnosis and prognosis are 

implemented with a filtering algorithm and correspond to a 

monitoring and prediction task respectively [7]. Recovery is 

implemented through filtering as well; it consists in setting the 

values of the variables involved in each policy to evaluate, 

followed by the computation of the EU of the current policy, and 

by finally selecting the one with the largest value of EU 

(maximum EU policy). The computation of the EU of a single 

policy is performed by computing the posterior probability of the 

variables involved in the utility function and by multiplying such 

probability with the corresponding utility value, summing up for 

all the variables of interest, i.e., those for which the utility table is 

defined (see Section VI for some examples). 

In the current implementation, we assume that the manage-

ment of policy events, triggered by recovery and managed by 

the Event Handler, runs concurrently to ARPHA. In this way, 

ARPHA does not have to wait for the conclusion of a recov-

ery policy to perform a new diagnosis or prognosis on the 

system, but it can also consider the changes performed during 

the execution of a recovery policy to perform a new diagnosis 

or prognosis. 
In summary, the following basic tasks are executed to 

implement the whole FDIR cycle of ARPHA (see again Fig. 2).  
1) Observation Collection: Data necessary for on-board rea-

soning are periodically retrieved; more specifically, at the 

beginning of a mission frame, sensor, and plan data are 

retrieved from the system context and the ABB, respec-

tively. Both kinds of data are converted to observations 

concerning the variables of the on-board model.   
2) Current State Detection: Observations are inserted into 

the JT; then, inference is executed by JT propagation. 

Inspection of the probabilities of the diagnostic vari-

ables can provide the diagnosis at the current mission 

time. The possible system states are normal (no anoma-

lies or failures are detected), anomalous (an anomaly is 

detected), or failed (a failure is detected).   
3) Reactive Recovery: This kind of recovery is performed   

if the current state detection returns a failed state; after 

having incorporated the current evidence in the 

diagnostic phase, for each available recovery policy, the 

policy itself is loaded (propagated) into the on-board JT; 

this actually means to set a specific value to the DBN 

variables affected by the policy itself at the proper time 

slice.  
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Fig. 2.   FDIR cycle of ARPHA (state-chart diagram).  

4) Future State Detection: If the current state is normal, 

then the time horizon t
_
 for prognosis is determined

6
 

and JT propagation is performed with a time step of _ 
(discretization step) until t

_
, by also considering plan 

information at each time step as evidence.  

5) Preventive Recovery: This kind of recovery is 

performed if the current state detection returns an 

anomalous state, or if the future state detection provides 

an anomalous or failed state; the choice of the best 

recovery policy fol-lows the same approach applied to 

the reactive recovery case, but the effects of policies are 

evaluated for a larger time horizon, since the model is 

analyzed for several time steps in the future.  

     

        VI. APPLICATION: FDIR FOR THE POWER 6)  
       SUPPLY SYSTEM OF MARS ROVER 

In order to test ARPHA, we considered some simulated 

scenarios concerning the ExoMars rover. Moreover, since the 

actual rover was not available for the study, we employed a 

rover simulator (ROSEX), able to simulate the rover’s sen-

soring and planning activities. In particular, the case study 

concerned the power supply system of the rover, with a par-

ticular attention to the following aspects and their combined 

behavior: rover’s solar arrays, power load, and rover’s battery. 

 

     

A.  Solar Arrays 
 

We assume the presence of three solar arrays, namely SA1, 
SA2, and SA3.              

 In particular, SA1 is composed of two redundant 

strings,
7

while SA2 and SA3 are composed of three strings. 

Each solar array can generate power if both the following 
conditions hold: 1) at least one string is not failed and 2) the 
combination of sun aspect angle (SAA), optical 
depth (OD), and local time (day or night) is suitable. In  

particular, the OD is given by the presence or absence of shadows 

or storms. The total amount of generated power is proportional to 

the number of solar arrays that are actually working. 
B.  Load 
 

The amount of load depends on the current action 

performed by the rover. 
C.  Battery 
 

We assume that the battery is composed of three redundant 

strings. The charge of the battery may be steady, decreasing, 

or increasing according to the current levels of load and gen-

eration by the solar arrays. The charge of the battery may be 

compromised by damage to the battery occurring in two sit-

uations: all the strings are failed, or the temperature of the 

battery is too low.  
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D.  Scenario S1 
 

In this scenario, we simulate the presence of a terrain slope 

that increases the SAA, causing lower power generation by 

solar arrays. The scenario S1 occurs when a low power 

genera-tion and a nonoptimal SAA are both present in the 

system. The SAA influences the degree of power generation; 

for instance, the SAA is optimal if the sun is perpendicular 

with respect to the solar arrays of the rover. The occurrence of 

the scenario may determine the anomalous state or the failed 

state of the system according to the degree of generated power 

(low or very low generation, respectively). Two recovery 

policies may be applied in case of detection of S1, with the 

aim of reducing the negative effects: (P1) transition to stand-

by mode including the suspension of the plan, with the aim of 

reducing the load while the power generation is limited. (P2) 

change of inclina-tion of SA2 and SA3, with the goal of 

improving the SAA and consequently the level of power 

generation (the tilting system cannot act on SA1). 
E.  Scenario S2 
 

In this scenario, we simulate the presence of dust or shadow 

that increases the OD and reduces the power generated by 

solar arrays. The scenario S2 occurs when both a low power 

generation and a compromised OD are present in the system. 

The presence of dust in the air or the rover positioned in a 

shadowed area reduces the irradiation of solar arrays, and the 

degree of generated power, as a consequence. In the best     

situation, there is no dust and the OD is null. 

F.  Scenario S3 
 

In this scenario, we simulate an unexpected high request of 

energy by the drilling operation. The power generated by solar 

arrays may not be enough to cope with the request of energy, 

so the battery may be used to provide the additional power. 

The scenario S3 occurs when the level of battery charge is not 

optimal during the drilling operation. This leads the system to 

an anomalous or failed state according to degree of charge of 

the battery. The recovery policies facing S3 are the following: 

(P4) as above; the goal is improving the power generation 

thanks to a better SAA, and avoiding the use of the battery by 

suspending the drill. (P5) suspension of the plan, retraction of 

the drill if drilling is under execution, and transition to stand-

by mode (with the aim of reducing the load). 

 
H.  DBN Model of the Case Study 
 

In the DBN, if a variable has a temporal evolution it is rep-

resented with two instances, one for each time slice (t, t + _). 
In particular, the instance at time slice t+_ is distinguished by 

the symbol # following the name of the variables (e.g., S1#). 

The two instances are connected by a temporal arc (appearing 

as a thick line in Fig. 3). Still in Fig. 3, the observable 

variables have a different color. The values coming from the 

sensors,the ABB, and the recovery policies, will become 

observations for such variables during the ARPHA cycles 

andthe inference analysis of the model. 
G.  Scenario S4 
 

If the battery is damaged, the battery charge level may 

become low. The scenario S4 occurs when both the battery 

damage and the low battery charge characterize the system. 

The damage may be due to the low temperature of the battery 

or the failure of its strings. In this case, we simulate a damage 

due to a low external temperature; such a fault is transient, 

since an increase of the temperature can bring back the bat-

tery to work correctly. The anomalous or failed state depends 

on the degree of charge. The recovery policies considered for 

S4 are P2 and P4 defined as above. In this case, the aim of the 

policies is to suspend the plan and then to try to get power 

from a better inclination of solar arrays. Notice that P2 and P4 

are potentially different (even when a drilling operation is not 

involved), since P2 first stops the current plan and then moves 

the solar arrays, while P4 tries to move solar arrays before 

stopping the plan. 
TABLE I 

UTILITY FUNCTION FOR POLICIES 
 

 

 

 

 

 

 
The DBN model (Fig. 3) of the case study (obtained by first 
an automatic compilation from a DFT, then through introduc-
tion of additional knowledge not available at the DFT level) 
has the following features.  

1) Solar Arrays: The variables representing the functioning 

or failure of basic components or subsystems, are binary; for 

example, StringSA11 and StringSA12 represent the state of 

the redundant strings composing the solar array SA1, while 

StringsSA1 represents the state of the set of strings. This 

variable, together with StringsSA1, influences the binary vari-

able PowGenSA1 modeling the presence or absence of power 

generation by SA1. The size of PowGen is four, in order to 

represent four intermediate levels of power generation 

depending on the number of solar arrays generating power.  
 

2) Load: The size of the variable ActionId is eight, in order 

to represent eight actions of interest in the model (in this 

exam-ple, actions may concern either the plan or the recovery, 

as previously mentioned). Such variable influences load 

whose size is five, in order to represent five intermediate 

levels of power consumption according to the action under 

execution. The variable balance is ternary and indicates if 

PowGen is equal to, higher or lower than load.  
 

3) Battery: The state (working or failed) of each redundant 

string composing the battery is represented by BattString1, 

BattString2, and BattString3, while the state of the set of strings 

is modeled by BattStrings. The variable Temp is ternary and 

represents the temperature of the battery (low, medium, and 

high). Temp and BattStrings influence BattFail represent-ing the 

damage of the battery.
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Fig. 4. Scenario S1. (a) Sun aspect angle (SAA) of SA2. (b) Power generation 
by SA1, SA2, and SA3. (c) ARPHA output at time step 3. 
PowGenSA1. In other words, PowGenSA1 is observed to be 

equal to its first value (index 0) with probability 1 at the same 

time step, in order to represent that the solar array SA1 is gen-

erating enough power (pwrsa1 > 15) in that step [the second 

value (index 1) instead, represents that the generated power is 

too low]. We assume that the power is good if greater than 15 

in the case of SA1, and greater than 25 in the case of SA2 and 

SA3 (SA1 is composed of two strings, while SA2 and SA3 are 

composed of three strings). 

We provide an example of ARPHA execution during a sim-

ulated mission, in the scenarios defined at the beginning of 

Section VI.  
1) S1: Slope of the Terrain: In Fig. 4(a), we show the SAA 

used to generate the power generation profile [Fig. 4(b)], 

exploiting the ROSEX. In time steps from 0 to 2, ARPHA 

estimates that both the current and the future state are nor-mal. 

At time step 3, diagnosis detects that the current state is 

anomalous. The output of ARPHA in this step is shown in 

Fig. 4(c): lines 01–07 contain the values of the sensors 

(generated by ROSEX) and the plan action under execution 

(SVF_action); lines 09–24 concern the diagnosis. In partic-

ular, at lines 10–11, the plan action (SVF_action=1=“wait”) 

performed in the current step is converted into the obser-

vation ActionId = 0; at lines 12–17, the sensor values are 

mapped into observations of the corresponding variable val-

ues: pwrsa1 = 15.71248 becomes PowGenSA1 = 0 (power 

generation by SA1 is high), pwrsa2 = 24.40224 becomes 

PowGenSA2 = 1 (power generation by SA2 is low), pwrsa1 = 

24.41719 becomes PowGenSA3 = 1 (power generation by 

SA3 is low), saa1 = 0.722340 becomes AngleSA1 = 1 (SAA1 

is not optimal), saa2 = 0.722340 becomes AngleSA2 = 1 

(SAA2 is not optimal), saa3 = 0.722340 becomes AngleSA3 

= 1 (SAA3 is not optimal), etc. Given such observations, 

ARPHA performs the inference of the model at the current 

time step (line 18), querying the variables S1#, S2#, S3#, S4# 

repre-senting the occurrence of the scenarios (lines 19–23). 

The probability that S1# = 1 is higher than a predefined 

threshold (line 21). In this way, ARPHA detects the scenario 

S1 and the anomalous state of the system (line 24); as a 

consequence, the preventive recovery is activated (lines 25–

46), in order to evaluate the policies P1 and P2, suitable to 

deal with S1.   
2) S2: Presence of Dust or Shadow: In Fig. 5(a), the 

ROSEX profile of OD is plotted. In Fig. 5(b), the ROSEX 

profile of power generated by solar arrays is plotted. At time 

steps 0, 1, and 2, ARPHA detects the normal state as the result 

of both diagnosis and prognosis. According to the out-put 

reported in Fig. 5(c), at time step 3, the normal state is still 

detected by diagnosis, but not by prognosis: lines 01–07 show 

the sensor values and the plan action.  

 3) S3: High Energy Request by Drill: In Fig. 6, we show the 

ROSEX battery profile that decreases in linear way. For the 

sake of brevity, we omit the output of ARPHA. No anoma-lies 

or failures are detected from time step 0 to time step 4. At time 

step 5, the drill action is performed while a reduced level of the 

battery is detected by sensors. The model infer-ence at the 

current step returns an anomalous state concerning the 

Scenario S3. Preventive recovery is activated and the poli-cies 

P4 and P5 are evaluated; P5 is suggested by ARPHA 
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4) S4: Damage to Battery: In Fig. 7(a) and (b), we pro-vide 

the ROSEX profile of battery temperature and charge, 

respectively. No anomalies or failures are detected from time 

step 0 to time step 26. At time step 27, a reduced level of the 

battery charge and the low temperature of the battery are 

indicated by the sensors. The model inference at the current 

step returns an anomalous state concerning the scenario S4. 

Preventive recovery is activated and the policies P2 and P4 

are evaluated, and P4 is suggested by ARPHA. This is 

justified by the fact that the power level is enough to try a tilt 

before stopping the plan, which is definitely the best choice. 
 

VII. CONCLUSION 
 

In this paper, we have presented an approach to intelligent 

FDIR through the use of DBN. We have discussed how the 

tasks typical of FDIR analysis (monitoring, diagnosis, progno-

sis, and recovery) can be naturally addressed in a DBN-based 

framework, by exploiting standard inference capabilities of 

such models. We have discussed how this approach can be 

applied in a real-world application, namely the FDIR anal-ysis 

of autonomous spacecraft. In choosing the architecture of 

ARPHA, we have taken into account different aspects: the 

uncertainty in the target system’s evolution, the uncertainty 

resulting in autonomous actions, the utility provided by the 

available actions, the on-line inference capabilities required by 

the application at hand. We believe that all of the above 

issues, naturally lead to the adoption of PGMs (and of DBN in 

particular) as a suitable choice, together with the adoption of a 

JT-based algorithm, suitable to approximate inference, 

without resorting to simulation-based techniques (that could 

be very unsuitable for the kind of on-line inference required 

by our task).  
Several approaches address the problem of monitoring and 

diagnosis of dynamic systems. The problem is tackled by 

resorting to hybrid dynamic Bayesian networks (HDBN) with 

a mixture of discrete and continuous variables in [25]; both 

partial observability and noisy sensors can be dealt with, and 

the inference task is implemented by combining a strategy 

similar to Kalman filter and approximation tech-niques based 

on the BK algorithm. However, the inference is limited to 

monitoring and diagnosis and the approach does not address 

the recovery task. Moreover, in this paper  
the HDBN is  obtained  from  a  more  abstract  specifica- 
tion called temporal  causal  graphs  (TCG)  [26]  which  is  
not a standard system engineering language as in the case of 

DFT.  
 

 

 

 

 

 

Another interesting probabilistic approach to the diagno-sis of 

electrical power systems (EPS) is presented in [29]; in this 

case the reference model is a static BN, obtained from a high-

level specification language and then compiled into an 

arithmetic circuit (AC) for inference [30]. Differently from 

our approach, the emphasis of the work is particularly on the 

diagnosis of EPS faults, without considering the prob-lem of 

autonomous preventive and reactive recovery. Common 

aspects include the automatic generation of the PGM (a static 

BN in the case of [27] and a DBN in our case) from a 

specification language (which is a standard system engineer-

ing language in our case), and the offline compilation of the 

graphical model into a run-time (on-line) inference engine 

(AC in [27] and JT in our case). While ACs are claimed to be 

very efficient, providing a fast (real-time) exact inference, the 

use of JT on DBN is justified in our case for two main 

reasons: 1) a JT is generally a more compact representation 

than an AC, and this is essential in the autonomous spacecraft 

domain, where the on-board resources are very limited also in 

terms of available memory and 2) the JT approach to DBN 

infer-ence allows to analyze (before the final on-board 

deployment of the inference engine) the suitability of 

approximate infer-ence, by changing the parameter of the BK 

algorithm and by trading-off inference speed and accuracy on 

simulated scenar-ios. Moreover, in our approach we can 

naturally deal with soft evidence and with different kinds of 

faults. 

 

 

Finally, in [31] a system health management approach to 

autonomous spacecraft is proposed, again by compiling BN 

into ACs, with the goal of fault detection and fast on-board 

diagnosis. The work does not approach the whole FDIR cycle 

for autonomous spacecraft, since imminent faults and 

recovery problems are not addressed.  
In conclusion, the framework we have investigated in the 

VERIFIM project has produced a proof of concept case study 

involving the definition of autonomous FDIR strategies for a 

Mars rover. We have discussed the resulting on-board 

software architecture, called ARPHA, and showed how the 

inference capabilities of DBNs can be suitably applied to deal 

with failure scenarios that need autonomous (preventive as 

well as reactive) recovery, under partial observability of both 

sys-tem behavior and environment 
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